Trigonometric Equations Question 168

Question: If a triangle $ PQR $ , $ \sin P,\ \sin Q,\ \sin R $ are in A.P., then

[IIT 1998]

Options:

A) The altitudes are in A.P.

B) The altitudes are in H.P.

C) The medians are in G.P.

D) The medians are in A.P.

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ PB=QC=l $ are in A.P.
    $ \Rightarrow $ $ a,,b,,c $ are in A.P.
    $ \therefore $ $ \frac{\sin P}{a}=\frac{\sin Q}{b}=\frac{\sin R}{c}=\lambda $ Let $ p_1,,p_2,,p_3 $ be altitudes from $ P,,Q,,R $ $ p_1=c\sin Q=\lambda bc $ , $ p_2=a\sin R=\lambda ac, $ $ p_3=b\sin P=\lambda ab $ Since $ a,,b,,c $ are in A.P. Hence $ \frac{1}{a},,\frac{1}{b},,\frac{1}{c} $ are in H.P.
    $ \Rightarrow $ $ \frac{abc}{a},,\frac{abc}{b},,\frac{abc}{c} $ are in H.P. $ \Rightarrow $ $ bc,,ac,,ab $ are in H.P.
    $ \Rightarrow $ $ \lambda bc,,\lambda ac,,\lambda ab $ are in H.P.
    $ \Rightarrow $ $ p_1,,p_2,,p_3 $ are in H.P.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें