Trigonometric Equations Question 168

Question: If a triangle $ PQR $ , $ \sin P,\ \sin Q,\ \sin R $ are in A.P., then

[IIT 1998]

Options:

A) The altitudes are in A.P.

B) The altitudes are in H.P.

C) The medians are in G.P.

D) The medians are in A.P.

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ PB=QC=l $ are in A.P.
    $ \Rightarrow $ $ a,,b,,c $ are in A.P.
    $ \therefore $ $ \frac{\sin P}{a}=\frac{\sin Q}{b}=\frac{\sin R}{c}=\lambda $ Let $ p_1,,p_2,,p_3 $ be altitudes from $ P,,Q,,R $ $ p_1=c\sin Q=\lambda bc $ , $ p_2=a\sin R=\lambda ac, $ $ p_3=b\sin P=\lambda ab $ Since $ a,,b,,c $ are in A.P. Hence $ \frac{1}{a},,\frac{1}{b},,\frac{1}{c} $ are in H.P.
    $ \Rightarrow $ $ \frac{abc}{a},,\frac{abc}{b},,\frac{abc}{c} $ are in H.P. $ \Rightarrow $ $ bc,,ac,,ab $ are in H.P.
    $ \Rightarrow $ $ \lambda bc,,\lambda ac,,\lambda ab $ are in H.P.
    $ \Rightarrow $ $ p_1,,p_2,,p_3 $ are in H.P.