Trigonometric Equations Question 172

Question: A tower of height b subtends an angle at a point O on the level of the foot of the tower and at a distance a from the foot of the tower. If a pole mounted on the tower also subtends an equal angle at O, the height of the pole is

[MP PET 1993, 2004]

Options:

A) $ b,( \frac{a^{2}-b^{2}}{a^{2}+b^{2}} ) $

B) $ b,( \frac{a^{2}+b^{2}}{a^{2}-b^{2}} ) $

C) $ a,( \frac{a^{2}-b^{2}}{a^{2}+b^{2}} ) $

D) $ a,( \frac{a^{2}+b^{2}}{a^{2}-b^{2}} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \tan \alpha =\frac{b}{a} $ , $ \tan 2\alpha =\frac{2(b/a)}{1-{{(b/a)}^{2}}}=\frac{2b}{a - \frac{b^2}{a}} $

$ \Rightarrow $ $ \frac{2ba}{a^{2}-b^{2}}=\frac{p+b}{a}\Rightarrow \frac{2ba^{2}-a^{2}b+b^{2}a}{a^{2}-b^{2}}=p $ $ \Rightarrow $ $ p=\frac{b(a^{2}+b^{2})}{(a^{2}-b^{2})} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें