Trigonometric Equations Question 178

Question: A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that of A. If the distance between A and B is 200 metres and the distance between B and C is 100 metres, then the height of balloon is given by

[Roorkee 1989]

Options:

A) 50 metres

B) $ 50,\sqrt{3} $ metres

C) $ 50,\sqrt{2} $ metres

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ x=h\cot 3\alpha $ …..(i) $ (x+100)=h\cot 2\alpha $ ……(ii) $ (x+300)=h\cot \alpha $ ……(iii) From (i) and (ii), $ -100=h,(\cot 3\alpha -\cot 2\alpha ), $ From (ii) and (iii), $ -200=h(\cot 2\alpha -\cot \alpha ), $ $ 100=h,( \frac{\sin \alpha }{\sin 3\alpha \sin 2\alpha } ) $ and $ 200=h,( \frac{\sin \alpha }{\sin 2\alpha \sin \alpha } ) $ or $ \frac{\sin 3\alpha }{\sin \alpha }=\frac{200}{100}\Rightarrow \frac{\sin 3\alpha }{\sin \alpha }=2 $
    $ \Rightarrow $ $ 3\sin \alpha -4{{\sin }^{3}}\alpha -2\sin \alpha =0 $
    $ \Rightarrow $ $ 4{{\sin }^{3}}\alpha -\sin \alpha =0\Rightarrow \sin \alpha =0 $ or $ {{\sin }^{2}}\alpha =\frac{1}{4}={{\sin }^{2}}( \frac{\pi }{6} )\Rightarrow \alpha =\frac{\pi }{6} $ or $ \alpha =\frac{5\pi }{6} $ Hence, $ h=200\sin \frac{\pi }{3}=200\frac{\sqrt{3}}{2}=100\sqrt{3} $ , {from (ii)} .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें