Trigonometric Equations Question 180

Question: If in the $ \Delta ABC,AB=2BC $ , then $ \tan \frac{B}{2}:\cot ( \frac{C-A}{2} ) $

Options:

A) 3 :1

B) 2 : 1

C) 1 : 2

D) 1 : 3

Show Answer

Answer:

Correct Answer: D

Solution:

  • We have, $ \frac{\tan ( \frac{B}{2} )}{\cot ( \frac{C-A}{2} )}=\frac{\sin \frac{B}{2}\sin ( \frac{C-A}{2} )}{\cos \frac{B}{2}\cos ( \frac{C-A}{2} )} $ $ =\frac{\sin C-\sin A}{\sin C+\sin A}=\frac{kc-ka}{kc+ka}=\frac{c-a}{c+a}=\frac{a}{3a}=\frac{1}{3},,{\because ,c=2a} $ .