Trigonometric Equations Question 184

Question: Which is true in the following

[UPSEAT 1999]

Options:

A) $ a\cos A+b\cos B+c\cos C=R\sin A\sin B\sin C $

B) $ a\cos A+b\cos B+c\cos C=2R\sin A\sin B\sin C $

C) $ a\cos A+b\cos B+c\cos C=4R\sin A\sin B\sin C $

D) $ a\cos A+b\cos B+c\cos C=8R\sin A\sin B\sin C $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \because $ $ a=2R\sin A,b=2R\sin B,c=2R,\sin C $
    $ \therefore $ $ a\cos A+b\cos B+c\cos C $ $ =R[(2\sin A\cos A)+(2\sin B\cos B)+(2\sin C\cos C)] $ $ =R(\sin 2A+\sin 2B+\sin 2C) $ $ =4R\sin A\sin B\sin C. $