Trigonometric Equations Question 19

Question: Two pillars of equal height stand on either side of a roadway which is 60 metres wide. At a point in the roadway between the pillars, the elevation of the top of pillars are 60° and 30°. The height of the pillars is

[UPSEAT 2004]

Options:

A) $ 15\sqrt{3}m $

B) $ \frac{15}{\sqrt{3}}m $

C) $ 15m $

D) $ 20m $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \tan 60{}^\circ =\frac{h}{x}\Rightarrow \frac{\sqrt{3}}{1}=\frac{h}{x}\Rightarrow h=\sqrt{3}x $                      .....(i)       $ \tan 30{}^\circ =\frac{h}{60-x}\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{60-x}\Rightarrow 60-x=\sqrt{3}h $  .....(ii) From equation (i) and (ii),  $ 60-x=\sqrt{3}(\sqrt{3}x) $     $ \frac{60}{4}=x\Rightarrow x=15 $  Then  $ h=\sqrt{3}x\Rightarrow h=15\sqrt{3} $  metre.