Trigonometric Equations Question 191

Question: In $ \Delta ABC,\frac{\sin (A-B)}{\sin (A+B)}= $

[MP PET 1986]

Options:

A) $ \frac{a^{2}-b^{2}}{c^{2}} $

B) $ \frac{a^{2}+b^{2}}{c^{2}} $

C) $ \frac{c^{2}}{a^{2}-b^{2}} $

D) $ \frac{c^{2}}{a^{2}+b^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \frac{\sin (A-B)}{\sin (A+B)}=\frac{\sin A\cos B-\sin B\cos A}{\sin C} $ $ =\frac{a}{c}\cos B-\frac{b}{c}\cos A $ But $ \cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac},\cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc} $
    $ \Rightarrow \frac{a}{c}\cos B-\frac{b}{c}\cos A=\frac{1}{2c^{2}} $ $ (a^{2}+c^{2}-b^{2}-b^{2}-c^{2}+a^{2}) $ $ =\frac{a^{2}-b^{2}}{c^{2}} $ .