Trigonometric Equations Question 195

Question: In $ \Delta ABC,( \cot \frac{A}{2}+\cot \frac{B}{2} ),( a{{\sin }^{2}}\frac{B}{2}+b{{\sin }^{2}}\frac{A}{2} ) $ =

[Roorkee 1988]

Options:

A) $ \cot C $

B) $ c\cot C $

C) $ \cot \frac{C}{2} $

D) $ c\cot \frac{C}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ { \cot \frac{A}{2}+\cot \frac{B}{2} }{ a{{\sin }^{2}}\frac{B}{2}+b{{\sin }^{2}}\frac{A}{2} } $ = $ { \frac{\cos \frac{C}{2}}{\sin \frac{A}{2}\sin \frac{B}{2}} }\text{ }{ a{{\sin }^{2}}\frac{B}{2}+b{{\sin }^{2}}\frac{A}{2} } $ = $ { \cos \frac{C}{2} }{ a\frac{\sin \frac{B}{2}}{\sin \frac{A}{2}}+b\frac{\sin \frac{A}{2}}{\sin \frac{B}{2}} } $ $ =\sqrt{\frac{s(s-c)}{ab}}{ a\frac{\sqrt{\frac{(s-a)(s-c)}{ac}}}{\sqrt{\frac{(s-b)(s-c)}{bc}}}+b\frac{\sqrt{\frac{(s-b)(s-c)}{bc}}}{\sqrt{\frac{(s-a)(s-c)}{ac}}} } $ $ =\sqrt{\frac{s(s-c)}{ab}}{ \sqrt{( \frac{s-a}{s-b} )ab}+\sqrt{( \frac{s-b}{s-a} )ab} } $ = $ \sqrt{s(s-c)}{ \frac{s-a+s-b}{\sqrt{(s-a)(s-b)}} }=\sqrt{s(s-c)}{ \frac{2s-a-b}{\sqrt{(s-a)(s-b)}} } $ $ =c\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}=c\cot \frac{C}{2} $ . Trick: Such type of unconditional problems can be checked by putting the particular values for $ a=1, $ $ b=\sqrt{3}, $ $ c=2 $ and $ A=30^{o} $ , $ B=60^{o},C=90^{o} $ . Hence expression is equal to 2 which is given by (d).


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें