Trigonometric Equations Question 20
Question: The solution of the equation $ | ,\begin{matrix} \cos \theta & \sin \theta & \cos \theta \\ -\sin \theta & \cos \theta & \sin \theta \\ -\cos \theta & -\sin \theta & \cos \theta \\ \end{matrix}, |=0 $ , is
[AMU 2002]
Options:
A) $ \theta =n\pi $
B) $ \theta =2n\pi \pm \frac{\pi }{2} $
C) $ \theta =n\pi \pm {{(-1)}^{n}}\frac{\pi }{4} $
D) $ \theta =2n\pi \pm \frac{\pi }{4} $
Show Answer
Answer:
Correct Answer: B
Solution:
- After solving the determinant $ 2\cos \theta =0 $
Þ $ \theta =2n\pi \pm \frac{\pi }{2} $ .