Trigonometric Equations Question 201

Question: In a $ \Delta ABC,a^{2}\sin 2C+c^{2}\sin 2A= $

[EAMCET 2001]

Options:

A) $ \Delta $

B) $ 2\Delta $

C) $ 3\Delta $

D) $ 4\Delta $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ a^{2}\sin 2C+c^{2}\sin 2A $ $ =a^{2}(2\sin C\cos C)+c^{2}(2\sin A\cos A) $ $ =2a^{2}( \frac{2\Delta }{ab}\cos C )+2c^{2}( \frac{2\Delta }{bc}\cos A ) $ $ (\because ,\Delta =\frac{1}{2}ab\sin C=\frac{1}{2}bc\sin A,,\therefore ,\sin C=\frac{2\Delta }{ab},,\sin A=\frac{2\Delta }{bc}) $ = $ 4\Delta { \frac{a\cos C+c\cos A}{b} }=4\Delta ( \frac{b}{b} )=4\Delta $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें