Trigonometric Equations Question 204

Question: In $ \Delta ABC, $ $ b^{2}\cos 2A-a^{2}\cos 2B= $

Options:

A) $ b^{2}-a^{2} $

B) $ b^{2}-c^{2} $

C) $ c^{2}-a^{2} $

D) $ a^{2}+b^{2}+c^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ b^{2}\cos 2A-a^{2}\cos 2B $ $ =b^{2}(1-2{{\sin }^{2}}A)-a^{2}(1-2{{\sin }^{2}}B) $ $ =b^{2}-a^{2}-2(b^{2}{{\sin }^{2}}A-a^{2}{{\sin }^{2}}B)=b^{2}-a^{2} $ .