Trigonometric Equations Question 206

Question: In $ \Delta ABC, $ if $ \cot A,\cot B,\cot C $ be in A. P., then $ a^{2},b^{2},c^{2} $ are in

[MP PET 1997]

Options:

A) H. P.

B) G. P.

C) A. P.

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \cot A,\cot B $ and $ \cot C $ are in A. P. Þ $ \cot A+\cot C=2\cot B $
    Þ $ \frac{\cos A}{\sin A}+\frac{\cos C}{\sin C}=\frac{2\cos B}{\sin B} $
    Þ $ \frac{b^{2}+c^{2}-a^{2}}{2bc(ka)}+\frac{a^{2}+b^{2}-c^{2}}{2ab(kc)}=2\frac{a^{2}+c^{2}-b^{2}}{2ac(kb)} $
    Þ $ a^{2}+c^{2}=2b^{2} $ . Hence $ a^{2},b^{2},c^{2} $ are in A. P. Note : Students should remember this question as a fact.