Trigonometric Equations Question 21
Question: The set of values of x for which the expression $ \frac{\tan 3x-\tan 2x}{1+\tan 3x\tan 2x}=1 $ , is
[MP PET 1992; MNR 1993; UPSEAT 2002]
Options:
A) $ \varphi $
B) $ \frac{\pi }{4} $
C) $ { n\pi +\frac{\pi }{4}:n=1,,2,,3….. } $
D) $ { 2n\pi +\frac{\pi }{4}:n=1,,2,,3….. } $
Show Answer
Answer:
Correct Answer: A
Solution:
- $ \tan (3x-2x)=\tan x=1 $
Þ $ x=n\pi +\frac{\pi }{4} $ But this value does not satisfy the given equation. Hence option (a) is the correct answer.