Trigonometric Equations Question 218

Question: In triangle $ ABC $ if $ a,b,c $ are in A. P., then the value of $ \frac{\sin \frac{A}{2}\sin \frac{C}{2}}{\sin \frac{B}{2}}= $

[AMU 1995]

Options:

A) 1

B) 1/2

C) 2

D) -1

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \frac{\sin \frac{A}{2}\sin \frac{C}{2}}{\sin \frac{B}{2}}=\sqrt{\frac{ac(s-b)(s-c)(s-b)(s-a)}{(s-a)(s-c)bc\times ab}}=\frac{s-b}{b} $ But a, b and c are in A. P. Þ $ 2b=a+c $ Hence $ \frac{s-b}{b}=\frac{\frac{3b}{2}-b}{b}=\frac{1}{2} $ .