Trigonometric Equations Question 240

Question: In triangle $ ABC, $ $ \frac{1+\cos (A-B)\cos C}{1+\cos (A-C)\cos B}= $

Options:

A) $ \frac{a-b}{a-c} $

B) $ \frac{a+b}{a+c} $

C) $ \frac{a^{2}-b^{2}}{a^{2}-c^{2}} $

D) $ \frac{a^{2}+b^{2}}{a^{2}+c^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ \frac{1+\cos C\cos (A-B)}{1+\cos (A-C)\cos B}=\frac{1-\cos (A+B)\cos (A-B)}{1-\cos (A-C)\cos (A+C)} $  
    

Þ $ \frac{1-{{\cos }^{2}}A+{{\sin }^{2}}B}{1-{{\cos }^{2}}A+{{\sin }^{2}}C}=\frac{{{\sin }^{2}}A+{{\sin }^{2}}B}{{{\sin }^{2}}A+{{\sin }^{2}}C}=\frac{a^{2}+b^{2}}{a^{2}+c^{2}} $ .