Trigonometric Equations Question 244

Question: If the sides of a triangle are in A. P., then the cotangent of its half the angles will be in

[MP PET 1993]

Options:

A) H. P.

B) G. P.

C) A. P.

D) No particular order

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let $ \cot \frac{A}{2},\cot \frac{B}{2} $ and $ \cot \frac{C}{2} $ be in A.P. , then $ 2\cot \frac{B}{2}=\cot \frac{C}{2}+\cot \frac{A}{2} $
    Þ $ 2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}}=\sqrt{\frac{s(s-c)}{(s-a)(s-b)}} $ $ +\sqrt{\frac{s(s-a)}{(s-b)(s-c)}} $ R.H.S = $ \sqrt{\frac{s}{(s-b)}}( \sqrt{\frac{(s-c)}{(s-a)}}+\sqrt{\frac{(s-a)}{(s-c)}} ) $ $ =\sqrt{\frac{s}{s-b}}( \frac{s-c+s-a}{\sqrt{(s-a)(s-c)}} ) $ $ =\sqrt{\frac{s}{s-b}}( \frac{2s-a-c}{\sqrt{(s-a)(s-c)}} ) $ $ =2\sqrt{\frac{s}{(s-b)}}\sqrt{\frac{{{(s-b)}^{2}}}{(s-a)(s-c)}} $ , $ {\because a+c=2b $ , $ a+b+c=2s $ i.e., $ 2(s-b)=2s-a-c} $ $ =2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} $ =L.H.S. Note: Students should remember this question as a fact.