Trigonometric Equations Question 246

Question: If $ \sin 2x+\sin 4x=2\sin 3x, $ then $ x $ =

[EAMCET 1989]

Options:

A) $ \frac{n\pi }{3} $

B) $ n\pi +\frac{\pi }{3} $

C) $ 2n\pi \pm \frac{\pi }{3} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ 2\sin 3x\cos x-2\sin 3x=0 $ ,
    $ \therefore $ $ \sin 3x=0 $ , $ \cos x=1 $ $ \frac{1}{2}=\frac{\frac{3h}{120}-\frac{h}{120}}{1+\frac{3h^{2}}{14400}}\Rightarrow h=120,,40 $ $ 3x=n\pi $ or $ x=\frac{n\pi }{3} $ and $ x=2n\pi $ The second value $ x=2n\pi $ is included in the value given by $ x=\frac{n\pi }{3} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें