Trigonometric Equations Question 252

The area of the equilateral triangle which contains three coins of unit radius is

[IIT Screening 2005]

Options:

A) $ 6+4\sqrt{3}\ sq.\ units $

B) $ 8+\sqrt{3} $ sq. units

C) $ 4+\frac{7\sqrt{3}}{2} $ sq. units

D) $ 12+2\sqrt{3} $ sq. units

Show Answer

Answer:

Correct Answer: A

Solution:

  • In $ \Delta BC_1M $ ; $ BM=(C_1M).\cot 30 $
    Þ $ BM=\sqrt{3} $
    Þ Similarly, $ CN=\sqrt{3} $ and $ MN=C_1C_2=1+1=2 $ Hence, side $ BC=\sqrt{3}+\sqrt{3}+2=2(1+\sqrt{3}) $ Þ Area of equilateral triangle $ =\frac{\sqrt{3}}{4}{{[2(1+\sqrt{3})]}^{2}} $ = $ AB=OA-OB=h(\cot 60^{o}-\cot 30^{o}) $ sq units.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें