Trigonometric Equations Question 261

Question: If in a right angled triangle the hypotenuse is four times as long as the perpendicular drawn to it from opposite vertex, then one of its acute angle is

[MP PET 1998, 2004; UPSEAT 2002]

Options:

A) $ 15^{o} $

B) $ 30^{o} $

C) $ 45^{o} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • If x is length of perpendicular drawn to it from opposite vertex of a right angled triangle, So, length of diagonal $ AB=y_1+y_2 $ …..(i) From $ \Delta OCB,y_2=x\cot \theta $ From $ \Delta OCA $ , $ y_1=x\tan \theta $ Put the values in equation (i), then $ AB=x(\tan \theta +\cot \theta ) $ …..(ii) $ \because $ Length of hypotenuse = 4 (length of perpendicular) \ $ x(\tan \theta +\cot \theta )=4x\Rightarrow \frac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\sin \theta .\cos \theta }=4 $
    Þ $ \sin 2\theta =\frac{1}{2}\Rightarrow 2\theta =30^{o} $ or $ \theta =15^{o} $ . Trick : $ \frac{(length,of,hypotenuse)}{ \begin{aligned} & \text{(length},of,perpendicular,drawn,from, \\ & \text{ opposite vertex},to,\text{hypotenuse)} \\ \end{aligned}}=\frac{2}{\sin 2\theta } $
    Þ $ 4=\frac{2}{\sin 2\theta }\Rightarrow \sin 2\theta =\frac{1}{2}=\sin 30^{o}\Rightarrow \theta =15^{o} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें