Trigonometric Equations Question 262

Question: If in a triangle the angles are in A. P. and $ b:c=\sqrt{3}:\sqrt{2} $ , then $ \angle A $ is equal to

[IIT 1981; Kurukshetra CEE 1998; Pb. CET 1990]

Options:

A) $ 30^{o} $

B) $ 60^{o} $

C) $ 15^{o} $

D) $ 75^{o} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Since the angles are in A.P., therefore $ B=60^{o} $ and $ \frac{b}{c}=\frac{\sin B}{\sin C}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}}{2\sin C}=\frac{\sqrt{3}}{\sqrt{2}} $
    Þ $ C=45^{o} $ so that $ A=180^{o}-60^{o}-45^{o}=75^{o} $ .