Trigonometric Equations Question 269

Question: In a $ \Delta ABC, $ $ 2a\sin ( \frac{A-B+C}{2} ) $ is equal to

[IIT Screening 2000]

Options:

A) $ a^{2}+b^{2}-c^{2} $

B) $ c^{2}+a^{2}-b^{2} $

C) $ b^{2}-c^{2}-a^{2} $

D) $ c^{2}-a^{2}-b^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ 2ac\sin \frac{A-B+C}{2}=2ac\sin \frac{\pi -2B}{2}=2ac\cos B $ = $ 2ac,\frac{c^{2}+a^{2}-b^{2}}{2ca}=c^{2}+a^{2}-b^{2} $ .