Trigonometric Equations Question 285

Question: Let D be the middle point of the side BC of a triangle ABC. If the triangle ADC is equilateral, then $ a^{2}:b^{2}:c^{2} $ is equal to

[Pb. CET 2004]

Options:

A) $ 1:4:3 $

B) $ 4:1:3 $

C) $ 4:3:1 $

D) $ 3:4:1 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \cos 120{}^\circ =\frac{x^{2}+x^{2}-AB^{2}}{2x^{2}} $
    Þ $ \frac{2x^{2}-AB^{2}}{2x^{2}}=\frac{-1}{2} $
    Þ $ 4x^{2}-2AB^{2}=-2x^{2} $
    Þ $ 3x^{2}=AB^{2} $ Þ $ AB=x\sqrt{3} $
    Þ $ a^{2}:b^{2}:c^{2}={{(2x)}^{2}}:x^{2}:{{(x\sqrt{3})}^{2}} $ = $ 4x^{2}:x^{2}:3x^{2} $ = $ 4:1:3 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें