Trigonometric Equations Question 293

Question: If in $ \Delta ABC, $ $ a=6,b=3 $ and $ \cos (A-B)=\frac{4}{5} $ , then its area will be

[MP PET 2004]

Options:

A) 7 square unit

B) 8 square unit

C) 9 square unit

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • We have, $ a=6,,b=3,\cos (A-B)=\frac{4}{5} $ Let $ t=\tan ( \frac{A-B}{2} ) $ $ \cos (A-B)=\frac{1-t^{2}}{1+t^{2}}\Rightarrow \frac{4}{5}=\frac{1-t^{2}}{1+t^{2}}=t=\frac{1}{3} $ So, tan $ ( \frac{A-B}{2} )=\frac{1}{3} $ . Then, $ \tan ( \frac{A-B}{2} )=\frac{a-b}{a+b}\cot \frac{C}{2} $ $ \frac{1}{3}=\frac{6-3}{6+3}\cot \frac{C}{2}\Rightarrow C=90{}^\circ $ Hence, $ \Delta =\frac{1}{2}(6),(3),\sin 90{}^\circ =9 $ square unit.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें