Trigonometric Equations Question 297
Question: Two men are on the opposite side of a tower. They measure the angles of elevation of the top of the tower $ 45^{o} $ and $ 30^{o} $ respectively. If the height of the tower is 40 m, find the distance between the men
[Karnataka CET 1998]
Options:
A) 40 m
B) $ 40\sqrt{3},m $
C) 68.280 m
D) 109.28 m
Show Answer
Answer:
Correct Answer: D
Solution:
- From $ \Delta O_1AB, $ $ \tan 45^{o}=\frac{40}{x}\Rightarrow x=40m $ From $ \Delta AO_2B, $ $ \cot 30^{o}=\frac{y}{40} $
$ \Rightarrow $ $ y=40, $ cot $ 30^{o}=40\sqrt{3} $ Distance between the men = $ 40+40\sqrt{3}=109.28 $ m.