Trigonometric Equations Question 300

Question: If in triangle $ ABC,\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{\sin (A-B)}{\sin (A+B)} $ , then the triangle is

[Roorkee 1987]

Options:

A) Right angled

B) Isosceles

C) Right angled or isosecles

D) Right angled isosecles

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \frac{\sin (A-B)}{\sin (A+B)}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} $
    Þ $ \frac{\sin (A-B)}{\sin (A+B)}=\frac{{{\sin }^{2}}A-{{\sin }^{2}}B}{{{\sin }^{2}}A+{{\sin }^{2}}B} $
    Þ $ \frac{\sin (A-B)}{\sin C}=\frac{\sin (A-B)\sin (A+B)}{{{\sin }^{2}}A+{{\sin }^{2}}B} $
    Þ $ \sin (A-B)[ \frac{1}{\sin C}-\frac{\sin C}{{{\sin }^{2}}A+{{\sin }^{2}}B} ]=0 $ Either $ \sin (A-B)=0\Rightarrow A=B $ i.e. isosceles or $ {{\sin }^{2}}A+{{\sin }^{2}}B={{\sin }^{2}}C $ or $ a^{2}+b^{2}=c^{2} $ i.e., right angled triangle.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें