Trigonometric Equations Question 311

Question: The angles of elevation of the top of a tower from the top and bottom at a building of height a are $ 30^{o} $ and $ 45^{o} $ respectively. If the tower and the building stand at the same level, then the height of the tower is

[Karnataka CET 2000]

Options:

A) $ a\sqrt{3} $

B) $ \frac{a\sqrt{3}}{\sqrt{3}-1} $

C) $ \frac{a,(3+\sqrt{3})}{2} $

D) $ a,(\sqrt{3}-1) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • In $ \Delta ABC,\tan 30^{o}=\frac{AC}{BC},\text{or }\frac{1}{\sqrt{3}}=\frac{x}{BC}, $ where $ AC=x, $ or $ BC=x\sqrt{3} $ and in $ \Delta ADE $ , $ \tan 45^{o}=\frac{a+x}{DE} $ or $ 1=\frac{a+x}{x\sqrt{3}} $ or $ x\sqrt{3}=a+x $ , $ x(\sqrt{3}-1)=a $ or $ x=\frac{a}{\sqrt{3}-1}. $ Therefore height of the tower, $ a+x=a+\frac{a}{\sqrt{3}-1} $ $ =a[ \frac{\sqrt{3}-1+1}{\sqrt{3}-1} ] $ $ =\frac{a\sqrt{3}}{\sqrt{3}-1}\times \frac{\sqrt{3}+1}{\sqrt{3}+1} $ $ =\frac{a(3+\sqrt{3)}}{2}. $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें