Trigonometric Equations Question 315

Question: In a triangle with one angle of $ 120^{o} $ the lengths of the sides form an A. P. If the length of the greatest side is $ 7cm $ , the area of triangle is

Options:

A) $ \frac{3\sqrt{15}}{4}cm^{2} $

B) $ \frac{15\sqrt{3}}{4}cm^{2} $

C) $ \frac{15}{4}cm^{2} $

D) $ \frac{3\sqrt{3}}{4}cm^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Given that $ 2b=a+c $ and $ c=7cm $ $ \cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}\Rightarrow -\frac{1}{2}=\frac{a^{2}+\frac{a^{2}+c^{2}+2ac}{4}-c^{2}}{2a\frac{(a+c)}{2}} $ On simplification and putting the value of c, we get $ a=3 $ and $ b=5 $ . Hence the area is $ \frac{15\sqrt{3}}{4}cm^{2} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें