Trigonometric Equations Question 315

Question: In a triangle with one angle of $ 120^{o} $ the lengths of the sides form an A. P. If the length of the greatest side is $ 7cm $ , the area of triangle is

Options:

A) $ \frac{3\sqrt{15}}{4}cm^{2} $

B) $ \frac{15\sqrt{3}}{4}cm^{2} $

C) $ \frac{15}{4}cm^{2} $

D) $ \frac{3\sqrt{3}}{4}cm^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Given that $ 2b=a+c $ and $ c=7cm $ $ \cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}\Rightarrow -\frac{1}{2}=\frac{a^{2}+\frac{a^{2}+c^{2}+2ac}{4}-c^{2}}{2a\frac{(a+c)}{2}} $ On simplification and putting the value of c, we get $ a=3 $ and $ b=5 $ . Hence the area is $ \frac{15\sqrt{3}}{4}cm^{2} $ .