Trigonometric Equations Question 316

Question: If the area of a triangle ABC is D, then $ a^{2}\sin 2B+b^{2}\sin 2A $ is equal to

[WB JEE 1988]

Options:

A) $ 3\Delta $

B) $ 2\Delta $

C) $ 4\Delta $

D) $ -4\Delta $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \Delta =\frac{1}{2}bc\sin A\Rightarrow \frac{1}{2}k^{2}\sin B\sin C\sin A=\Delta $ $ a^{2}\sin 2B+b^{2}\sin 2A=2(a^{2}\sin B\cos B+b^{2}\sin A\cos A) $ $ =2k^{2}({{\sin }^{2}}A\sin B\cos B+{{\sin }^{2}}B\sin A\cos A) $ $ =2k^{2}(\sin A\sin B)(\sin C) $ $ =2k^{2}(\sin A\sin B\sin C)=4\Delta $ .