Trigonometric Equations Question 32

Question: A ladder rests against a wall making an angle $ \alpha $ with the horizontal. The foot of the ladder is pulled away from the wall through a distance x, so that it slides a distance y down the wall making an angle $ \beta $ with the horizontal. The correct relation is

[IIT 1985]

Options:

A) $ x=y\tan \frac{\alpha +\beta }{2} $

B) $ y=x\tan \frac{\alpha +\beta }{2} $

C) $ x=y\tan (\alpha +\beta ) $

D) $ y=x\tan (\alpha +\beta ) $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ PB=QC=l $ (Length of ladder)
    $ \Rightarrow $ $ PA=l\cos \alpha ,,QA=l,\cos \beta $

$ \Rightarrow $ $ AC=l\sin \beta ,,AB=l\sin \alpha $
$ \Rightarrow $ $ CB=AB-AC=l,(\sin \alpha -\sin \beta ) $
$ \Rightarrow $ $ y=l(\sin \alpha -\sin \beta ) $ and $ QP=x=AQ-AP=l $ , $ (\cos \beta -\cos \alpha ) $
$ \Rightarrow $ $ \frac{CB}{QP}=\frac{\sin \alpha -\sin \beta }{\cos \beta -\cos \alpha }=\frac{y}{x}=\frac{2\sin ( \frac{\alpha -\beta }{2} ),\cos ( \frac{\alpha +\beta }{2} )}{2\sin ( \frac{\alpha +\beta }{2} ),\sin ( \frac{\alpha -\beta }{2} )} $
$ \Rightarrow $ $ \frac{y}{x}=\cot ( \frac{\alpha +\beta }{2} )\Rightarrow x=y\tan ( \frac{\alpha +\beta }{2} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें