Trigonometric Equations Question 324

Question: $ ABC $ is a right angled isosceles triangle with $ \angle B=90^{o} $ . If D is a point on $ AB $ so that $ \angle DCB=15^{o} $ and if $ AD=35cm $ , then $ CD= $

[Kerala (Engg.) 2005]

Options:

A) $ 35\sqrt{2} $ cm

B) $ 70\sqrt{2}cm $

C) $ \frac{35\sqrt{3}}{2}cm $

D) $ 35\sqrt{6} $ cm

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \angle DCB=15^{o} $ $ \angle CAB=45^{o} $ and $ \angle CDB=75^{o} $ Let $ BD=x $ and $ AD=35 $ cm. $ \tan \angle CAB=\frac{CB}{AB} $ Þ $ \tan 45^{o}=\frac{CB}{35+x} $ \ $ \tan 75^{o}=\frac{CB}{DB}=\frac{CB}{x} $ Þ $ CB=x\tan 75^{o} $ $ CB=(35+x)\tan 45^{o} $ = $ x\tan 75^{o} $
    Þ $ x=\frac{35\tan 45^{o}}{\tan 75^{o}-\tan 45^{o}} $ = $ \frac{35}{\tan 75^{o}-1} $ But $ \cos 75^{o}=\frac{x}{CD} $ $ CD=\frac{x}{\cos 75^{o}} $ $ =\frac{1}{\cos 75^{o}}\times \frac{35}{\tan 75^{o}-1}=\frac{35}{\sin 75^{o}-\cos 75^{o}} $ $ =\frac{35}{\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{\sqrt{3}-1}{2\sqrt{2}}}=\frac{35}{\frac{2}{2\sqrt{2}}} $ $ =35\sqrt{2} $ cm.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें