Trigonometric Equations Question 327

Question: If $ \sin \theta +\cos \theta =1 $ then the general value of $ \theta $ is

[MNR 1987; IIT 1981; Karnataka CET 2000, 03; DCE 2000]

Options:

A) $ 2n\pi $

B) $ n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4} $

C) $ 2n\pi +\frac{\pi }{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \sin \theta +\cos \theta =1\Rightarrow \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}} $ Dividing by $ \sqrt{1^{2}+1^{2}}=\sqrt{2} $ , we get $ \sin ( \theta +\frac{\pi }{4} )=\frac{1}{\sqrt{2}}=\sin \frac{\pi }{4} $
    $ \Rightarrow $ $ \theta +\frac{\pi }{4}=n\pi +{{(-1)}^{n}}\frac{\pi }{4}\Rightarrow \theta =n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें