Trigonometric Equations Question 335

Question: If $ \sqrt{3}\cos ,\theta +\sin \theta =\sqrt{2}, $ then the most general value of $ \theta $ is

[MP PET 1991, 2002; UPSEAT 1999]

Options:

A) $ n\pi +{{(-1)}^{n}}\frac{\pi }{4} $

B) $ {{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{3} $

C) $ n\pi +\frac{\pi }{4}-\frac{\pi }{3} $

D) $ n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ \frac{\sqrt{3}}{2}\cos \theta +\frac{1}{2}\sin \theta =\frac{\sqrt{2}}{2} $ {dividing by $ \sqrt{{{(\sqrt{3})}^{2}}+1^{2}}=2} $
    $ \Rightarrow $ $ \sin ( \theta +\frac{\pi }{3} )=\frac{1}{\sqrt{2}}=\sin ( \frac{\pi }{4} ) $
    $ \Rightarrow $ $ \theta =n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{3} $ .