Trigonometric Equations Question 336

Question: If $ {{\sin }^{2}}\theta -2\cos \theta +\frac{1}{4}=0, $ then the general value of $ \theta $ is

[MP PET 1984]

Options:

A) $ n\pi \pm \frac{\pi }{3} $

B) $ 2n\pi \pm \frac{\pi }{3} $

C) $ 2n\pi \pm \frac{\pi }{6} $

D) $ n\pi \pm \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ 1-{{\cos }^{2}}\theta -2\cos \theta +\frac{1}{4}=0 $
    $ \Rightarrow $ $ {{\cos }^{2}}\theta +2\cos \theta -\frac{5}{4}=0 $
    $ \Rightarrow $ $ \cos \theta =\frac{-2\pm \sqrt{4+5}}{2}=-1\pm \frac{3}{2} $ Since $ |\cos \theta |,\le 1 $ , hence $ \cos \theta =-1-\frac{3}{2} $ is ruled out.
    $ \Rightarrow $ $ \cos \theta =-1+\frac{3}{2}=\frac{1}{2}=\cos ( \frac{\pi }{3} ) $
    $ \Rightarrow $ $ \theta =2n\pi \pm \frac{\pi }{3} $ .