Trigonometric Equations Question 337

Question: If $ \sqrt{2}\sec \theta +\tan \theta =1, $ then the general value $ \theta $ is

[MP PET 1989]

Options:

A) $ n\pi +\frac{3\pi }{4} $

B) $ 2n\pi +\frac{\pi }{4} $

C) $ 2n\pi -\frac{\pi }{4} $

D) $ 2n\pi \pm \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \sqrt{2}\sec \theta +\tan \theta =1\Rightarrow \frac{\sqrt{2}}{\cos \theta }+\frac{\sin \theta }{\cos \theta }=1 $
    $ \Rightarrow $ $ \sin \theta -\cos \theta =-\sqrt{2} $ Dividing by $ \sqrt{2} $ on both sides, we get $ \frac{1}{\sqrt{2}}\sin \theta -\frac{1}{\sqrt{2}}\cos \theta =-1 $
    $ \Rightarrow $ $ \frac{1}{\sqrt{2}}\cos \theta -\frac{1}{\sqrt{2}}\sin \theta =1\Rightarrow \cos ,( \theta +\frac{\pi }{4} )=\cos (0) $
    $ \Rightarrow $ $ \theta +\frac{\pi }{4}=2n\pi \pm 0\Rightarrow \theta =2n\pi -\frac{\pi }{4} $ .