Trigonometric Equations Question 34

Question: If $ \sin 5x+\sin 3x+\sin x=0 $ , then the value of x other than 0 lying between $ 0\le x\le \frac{\pi }{2} $ is

[MNR 1985]

Options:

A) $ \frac{\pi }{6} $

B) $ \frac{\pi }{12} $

C) $ \frac{\pi }{3} $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \sin 5x+\sin 3x+\sin x=0 $
    $ \Rightarrow $ $ -\sin 3x=\sin 5x+\sin x=-2\sin 3x\cos 2x $ $ \Rightarrow $ $ \sin 3x=0 $
    $ \Rightarrow $ $ x=0 $ or $ \cos 2x=-\frac{1}{2}=-\cos ,( \frac{\pi }{3} )=\cos ,( \pi -\frac{\pi }{3} ) $
    $ \Rightarrow $ $ 2x=2n\pi \pm ( \pi -\frac{\pi }{3} ),\Rightarrow x=n\pi \pm ( \frac{\pi }{3} ) $ For x lying between 0 and $ \frac{\pi }{2} $ , we get $ x=\frac{\pi }{3} $ and $ x=0 $ . Trick: Check with options.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें