Trigonometric Equations Question 34

Question: If $ \sin 5x+\sin 3x+\sin x=0 $ , then the value of x other than 0 lying between $ 0\le x\le \frac{\pi }{2} $ is

[MNR 1985]

Options:

A) $ \frac{\pi }{6} $

B) $ \frac{\pi }{12} $

C) $ \frac{\pi }{3} $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \sin 5x+\sin 3x+\sin x=0 $
    $ \Rightarrow $ $ -\sin 3x=\sin 5x+\sin x=-2\sin 3x\cos 2x $ $ \Rightarrow $ $ \sin 3x=0 $
    $ \Rightarrow $ $ x=0 $ or $ \cos 2x=-\frac{1}{2}=-\cos ,( \frac{\pi }{3} )=\cos ,( \pi -\frac{\pi }{3} ) $
    $ \Rightarrow $ $ 2x=2n\pi \pm ( \pi -\frac{\pi }{3} ),\Rightarrow x=n\pi \pm ( \frac{\pi }{3} ) $ For x lying between 0 and $ \frac{\pi }{2} $ , we get $ x=\frac{\pi }{3} $ and $ x=0 $ . Trick: Check with options.


Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index