Trigonometric Equations Question 343

Question: If $ \tan 2\theta \tan \theta =1 $ , then the general value of $ \theta $ is

[Roorkee 1980; Karnataka CET 1992, 93, 2003]

Options:

A) $ ( n+\frac{1}{2} )\frac{\pi }{3} $

B) $ ( n+\frac{1}{2} ),\pi $

C) $ ( 2n\pm \frac{1}{2} )\frac{\pi }{3} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \tan 2\theta =\cot \theta $
    Þ $ \tan 2\theta =\tan ( \frac{\pi }{2}-\theta ) $
    $ \Rightarrow $ $ 2\theta =n\pi +\frac{\pi }{2}-\theta \Rightarrow \theta =\frac{n\pi }{3}+\frac{\pi }{6} $ .