Trigonometric Equations Question 360

Question: If $ 1+\sin x+{{\sin }^{2}}x+….. $ to $ \infty =4+2\sqrt{3},,0<x<\pi , $ then

[DCE 2001]

Options:

A) $ x=\frac{\pi }{6} $

B) $ x=\frac{\pi }{3} $

C) $ x=\frac{\pi }{3} $ or $ \frac{\pi }{6} $

D) $ x=\frac{\pi }{3} $ or $ \frac{2\pi }{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ 1+\sin x+{{\sin }^{2}}x+….\infty =4+2\sqrt{3} $
    $ \Rightarrow $ $ \frac{1}{1-\sin x}=4+2\sqrt{3} $
    $ \Rightarrow $ $ \sin x=1-\frac{1}{4+2\sqrt{3}} $
    $ \Rightarrow $ $ \sin x=1-\frac{(4-2\sqrt{3})}{4}=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2} $
    $ \Rightarrow $ $ x=\frac{\pi }{3} $ or $ \frac{2\pi }{3} $ .