Trigonometric Equations Question 368

Question: If $ \tan \theta +\tan 2\theta +\tan 3\theta =\tan \theta \tan 2\theta \tan 3\theta $ , then the general value of $ \theta $ is

Options:

A) $ n\pi $

B) $ \frac{n\pi }{6} $

C) $ n\pi -\frac{\pi }{4}\pm \alpha $

D) $ \frac{n\pi }{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \tan \theta +\tan 2\theta +\tan 3\theta =\tan \theta \tan 2\theta \tan 3\theta $ $ \tan 6\theta =\frac{\tan \theta +\tan 2\theta +\tan 3\theta -\tan \theta \tan 2\theta \tan 3\theta }{1-\sum \tan \theta \tan 2\theta } $ = 0, (from the given condition)
    $ \Rightarrow $ $ 6\theta =n\pi \Rightarrow \theta =n\pi /6 $ . Trick: In such type of problems, the general value of $ \theta $ is given by $ \frac{n\pi }{\text{sum of number of }\theta } $ . So the general value of $ \theta $ is $ \frac{n\pi }{1+2+3}=\frac{n\pi }{6} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें