Trigonometric Equations Question 369

Question: The solution of $ 3\tan (A-15^{o})=\tan (A+15^{o}) $ is

Options:

A) $ n\pi +\frac{\pi }{4} $

B) $ 2n\pi +\frac{\pi }{4} $

C) $ 2n\pi -\frac{\pi }{4} $

D) $ \frac{n\pi }{2}+{{(-1)}^{n}}\frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \frac{3\sin (A-15^{o})}{\cos (A-15^{o})}=\frac{\sin (A+15^{o})}{\cos (A+15^{o})} $
    Þ $ 3\sin (A-15^{o})\cos (A+15^{o}) $ $ =\cos (A-15^{o})\sin (A+15^{o}) $
    $ \Rightarrow $ $ 2\sin (A-15^{o})\cos (A+15^{o})=\frac{1}{2} $
    $ \Rightarrow $ $ \sin 2A-\sin 30^{o}=\frac{1}{2} $
    $ \Rightarrow $ $ 2A=2n\pi +\frac{\pi }{2} $
    $ \Rightarrow $ $ A=n\pi +\frac{\pi }{4} $ .