Trigonometric Equations Question 37

Question: If $ \sec x\cos 5x+1=0 $ , where $ 0<x<2\pi $ , then x =

[Roorkee 1978; IIT 1963]

Options:

A) $ \frac{\pi }{5},\frac{\pi }{5} $

B) $ \frac{\pi }{5} $

C) $ \frac{\pi }{4} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \sec x\cos 5x=-1\Rightarrow \cos 5x=-\cos x $
    $ \Rightarrow $ $ 5x=2n\pi \pm (\pi -x) $
    $ \Rightarrow $ $ x=\frac{(2n+1)\pi }{6}\text{ or }\frac{(2n-1)\pi }{4} $ Hence $ x=\frac{\pi }{4},,\frac{\pi }{2},,\frac{3\pi }{4},,\frac{5\pi }{6},,\frac{5\pi }{4},,\frac{7\pi }{6},,\frac{7\pi }{4},,\frac{9\pi }{6},,\frac{11\pi }{6} $ .