Trigonometric Equations Question 371

Question: If $ \cos 2\theta =(\sqrt{2}+1)( \cos \theta -\frac{1}{\sqrt{2}} ) $ , then the value of $ \theta $ is

[Roorkee 1977]

Options:

A) $ 2n\pi +\frac{\pi }{4} $

B) $ 2n\pi \pm \frac{\pi }{4} $

C) $ 2n\pi -\frac{\pi }{4} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ 2{{\cos }^{2}}\theta -(\sqrt{2}+1)\cos \theta -1+\frac{(\sqrt{2}+1)}{\sqrt{2}}=0 $
    $ \Rightarrow $ $ \cos \theta =\frac{(\sqrt{2}+1)\pm \sqrt{{{(\sqrt{2}+1)}^{2}}-\frac{8}{\sqrt{2}}}}{4} $
    $ \Rightarrow $ $ \cos \theta =\cos ( \frac{\pi }{4} ) $
    $ \Rightarrow $ $ \theta =2n\pi \pm \frac{\pi }{4} $ . Trick: Since $ \theta =\frac{\pi }{4} $ satisfies the equation and therefore the general value should be $ 2n\pi \pm \frac{\pi }{4} $ .