Trigonometric Equations Question 374

Question: If the solution for $ \theta $ of $ \cos p\theta +\cos q\theta =0,\ p>0,\ q>0 $ are in A.P., then the numerically smallest common difference of A.P. is

[Kerala (Engg.) 2001]

Options:

A) $ \frac{\pi }{p+q} $

B) $ \frac{2\pi }{p+q} $

C) $ \frac{\pi }{2(p+q)} $

D) $ \frac{1}{p+q} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Given $ \cos p\theta =-\cos q\theta =\cos (\pi +q\theta ) $
    Þ $ p\theta =2n\pi \pm (\pi +q\theta ),n\in I $
    Þ $ \theta =\frac{(2n+1)\pi }{p-q} $ or $ \frac{(2n-1)\pi }{p+q},n\in I $ Both the solutions form an A.P. $ \theta =\frac{(2n+1)\pi }{p-q} $ gives us an A.P. with common difference $ \frac{2\pi }{p-q} $ and $ \theta =\frac{(2n-1)\pi }{p+q} $ gives us an A.P. with common difference $ =\frac{2\pi }{p+q} $ . Certainly, $ \frac{2\pi }{p+q}<,| ,\frac{2\pi }{p-q}, | $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें