Trigonometric Equations Question 38

Question: The equation $ {{\sin }^{4}}x+{{\cos }^{4}}x+\sin 2x+\alpha =0 $ is solvable for

Options:

A) $ -\frac{1}{2}\le \alpha \le \frac{1}{2} $

B) $ -3\le \alpha \le 1 $

C) $ -\frac{3}{2}\le \alpha \le \frac{1}{2} $

D) $ -1\le \alpha \le 1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ {{\sin }^{4}}x+{{\cos }^{4}}x+\sin 2x+\alpha =0 $
    Þ $ {{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x+\sin 2x+\alpha =0 $
    Þ $ {{\sin }^{2}}2x-2\sin 2x-2-2\alpha =0 $ Let $ \beta =\theta -\alpha $ . Then the given equation becomes $ y^{2}-2y-2(1+\alpha )=0 $ , where $ -1\le y\le 1 $ , $ (\because \text{ }-1\le \sin 2x\le 1) $ For real, discriminant $ \ge 0 $
    $ \Rightarrow $ $ 3+2\alpha \ge 0 $
    $ \Rightarrow $ $ \alpha \ge -\frac{3}{2} $ Also $ -1\le y\le 1\Rightarrow -1\le 1-\sqrt{3+2\alpha }\le 1 $
    $ \Rightarrow $ $ 3+2\alpha \le 4\Rightarrow \alpha \le \frac{1}{2} $ . Thus $ -\frac{3}{2}\le \alpha \le \frac{1}{2} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें