Trigonometric Equations Question 38

Question: The equation $ {{\sin }^{4}}x+{{\cos }^{4}}x+\sin 2x+\alpha =0 $ is solvable for

Options:

A) $ -\frac{1}{2}\le \alpha \le \frac{1}{2} $

B) $ -3\le \alpha \le 1 $

C) $ -\frac{3}{2}\le \alpha \le \frac{1}{2} $

D) $ -1\le \alpha \le 1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ {{\sin }^{4}}x+{{\cos }^{4}}x+\sin 2x+\alpha =0 $
    Þ $ {{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x+\sin 2x+\alpha =0 $
    Þ $ {{\sin }^{2}}2x-2\sin 2x-2-2\alpha =0 $ Let $ \beta =\theta -\alpha $ . Then the given equation becomes $ y^{2}-2y-2(1+\alpha )=0 $ , where $ -1\le y\le 1 $ , $ (\because \text{ }-1\le \sin 2x\le 1) $ For real, discriminant $ \ge 0 $
    $ \Rightarrow $ $ 3+2\alpha \ge 0 $
    $ \Rightarrow $ $ \alpha \ge -\frac{3}{2} $ Also $ -1\le y\le 1\Rightarrow -1\le 1-\sqrt{3+2\alpha }\le 1 $
    $ \Rightarrow $ $ 3+2\alpha \le 4\Rightarrow \alpha \le \frac{1}{2} $ . Thus $ -\frac{3}{2}\le \alpha \le \frac{1}{2} $ .