Trigonometric Equations Question 380

Question: If $ \sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha ), $ then $ x= $

Options:

A) $ n\pi \pm \frac{\pi }{6} $

B) $ n\pi \pm \frac{\pi }{3} $

C) $ n\pi \pm \frac{\pi }{4} $

D) $ n\pi \pm \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha ({{\sin }^{2}}x-{{\sin }^{2}}\alpha ) $
    $ \therefore $ $ {{\sin }^{2}}x={{( \frac{\sqrt{3}}{2} )}^{2}} $
    Þ $ {{\sin }^{2}}x={{\sin }^{2}}\pi /3 $
    Þ $ x=n\pi \pm \pi /3 $ .