Trigonometric Equations Question 381

Question: If $ \sin ( \frac{\pi }{4}\cot \theta )=\cos ( \frac{\pi }{4}\tan \theta ), $ then $ \theta = $

[Pb. CET 1988]

Options:

A) $ n\pi +\frac{\pi }{4} $

B) $ 2n\pi \pm \frac{\pi }{4} $

C) $ n\pi -\frac{\pi }{4} $

D) $ 2n\pi \pm \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • We have $ \frac{\pi }{4}\cot \theta =\frac{\pi }{2}-\frac{\pi }{4}\tan \theta $
    $ \Rightarrow \tan \theta +\cot \theta =2 $
    $ \Rightarrow $ $ \sin 2\theta =1=\sin \frac{\pi }{2}\Rightarrow \theta =n\pi +\frac{\pi }{4} $ .