Trigonometric Equations Question 386

Question: General value of $ \theta $ satisfying the equation $ {{\tan }^{2}}\theta +\sec 2\theta -=1 $ is

[IIT 1996]

Options:

A) $ m\pi ,n\pi +\frac{\pi }{3} $

B) $ m\pi ,n\pi \pm \frac{\pi }{3} $

C) $ m\pi ,n\pi \pm \frac{\pi }{6} $

D) None of these (Where m and n are integers)

Show Answer

Answer:

Correct Answer: B

Solution:

  • Using $ \sec 2\theta =\frac{1}{\cos 2\theta }=\frac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta } $ , we can write the given equation as $ {{\tan }^{2}}\theta +\frac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta }=1 $ .
    $ \Rightarrow $ $ {{\tan }^{2}}\theta (1-{{\tan }^{2}}\theta )+1+{{\tan }^{2}}\theta =1-{{\tan }^{2}}\theta $
    $ \Rightarrow $ $ 3{{\tan }^{2}}\theta -{{\tan }^{4}}\theta =0\Rightarrow {{\tan }^{2}}\theta (3-{{\tan }^{2}}\theta )=0 $
    $ \Rightarrow $ $ \tan \theta =0 $ or $ \tan \theta =\pm \sqrt{3} $ Now $ \tan \theta =0\Rightarrow \theta =m\pi $ , where m is an integer and tan $ \theta =\pm \sqrt{3}=\tan (\pm \pi /3) \Rightarrow \theta =n\pi \pm \frac{\pi }{3} $ , where n is an integer. Thus $ \theta =m\pi ,,n\pi \pm \frac{\pi }{3} $ , where m and n are integers.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें