Trigonometric-Equations Question 391
Question: $ \cot \theta =\sin 2\theta (\theta \ne n\pi $ , n is integer), if $ \theta = $
[BIT Ranchi 1991; Pb. CET 1991]
Options:
A) $ 45^{o} $ and $ 60^{o} $
B) $ 45^{o} $ and $ 90^{o} $
C) $ 45^{o} $ only
D)  $ 90^{o} $ only
 Correct Answer: B $ \Rightarrow  $    $ \cos \theta =0 $  or  $ {{\sin }^{2}}\theta =\frac{1}{2}={{\sin }^{2}}( \frac{\pi }{4} ) $Show Answer
  Answer:
Solution:
$ \cot \theta =\sin 2\theta ,\text{  }(\theta \ne n\pi )\Rightarrow 2{{\sin }^{2}}\theta \cos \theta =\cos \theta  $   
$ \Rightarrow  $   $ \theta =(2n+1)\frac{\pi }{2} $  or  $ \theta =n\pi \pm \frac{\pi }{4} $
$ \Rightarrow  $   $ \theta =90^{o} $  and  $ 45^{o} $ .
 BETA
  BETA 
             
             
           
           
           
          