Trigonometric-Equations Question 394

Question: If $ \cos 40^{o}=x $ and $ \cos \theta =1-2x^{2} $ , then the possible values of $ \theta $ lying between $ 0^{o} $ and $ 360^{o} $ is

Options:

A) $ 100^{o} $ and $ 260^{o} $

B) $ 80^{o} $ and $ 280^{o} $

C) $ 280^{o} $ and $ 110^{o} $

D) $ 110^{o} $ and $ 260^{o} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Here $ \cos \theta =1-2{{\cos }^{2}}40^{o} $ = $ -(2{{\cos }^{2}}40^{o}-1) $ $ =-\cos (2\times 40^{o}) $ = $ -\cos 80^{o} $ = $ \cos (180^{o}+80^{o})=\cos (180^{o}-80^{o}) $ Hence, $ \cos 260{}^\circ and\cos 100{}^\circ $ i.e., $ \theta =100{}^\circ $ and 260°.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें