Trigonometric-Equations Question 395

Question: The only value of x for which $ {2^{\sin x}}+{2^{\cos x}}>{2^{1-(1/\sqrt{2})}} $ holds, is

Options:

A) $ \frac{5\pi }{4} $

B) $ \frac{3\pi }{4} $

C) $ \frac{\pi }{2} $

D) All values of x

Show Answer

Answer:

Correct Answer: A

Solution:

  • Since A.M. $ \ge $ G.M. $ \frac{1}{2}({2^{\sin x}}+{2^{\cos x}})\ge \sqrt{{2^{\sin x}}{{.2}^{\cos x}}} $
    $ \Rightarrow $ $ {2^{\sin x}}+{2^{\cos x}}\ge {{2.2}^{\frac{\sin x+\cos x}{2}}} $
    $ \Rightarrow $ $ {2^{\sin x}}+{2^{\cos x}}\ge {2^{1+\frac{\sin x+\cos x}{2}}} $ and we know that $ \sin x+\cos x\ge -\sqrt{2} $
    $ \therefore $ $ {2^{\sin x}}+{2^{\cos x}}>{2^{1-(1/\sqrt{2})}} $ , for $ x=\frac{5\pi }{4} $