Trigonometric-Equations Question 395
Question: The only value of x for which $ {2^{\sin x}}+{2^{\cos x}}>{2^{1-(1/\sqrt{2})}} $ holds, is
Options:
A) $ \frac{5\pi }{4} $
B) $ \frac{3\pi }{4} $
C) $ \frac{\pi }{2} $
D) All values of x
 Correct Answer: AShow Answer
  Answer:
Solution:
$ \Rightarrow  $   $ {2^{\sin x}}+{2^{\cos x}}\ge {{2.2}^{\frac{\sin x+\cos x}{2}}} $
$ \Rightarrow  $  $ {2^{\sin x}}+{2^{\cos x}}\ge {2^{1+\frac{\sin x+\cos x}{2}}} $  and we know that  $ \sin x+\cos x\ge -\sqrt{2} $
$ \therefore  $    $ {2^{\sin x}}+{2^{\cos x}}>{2^{1-(1/\sqrt{2})}} $ , for $ x=\frac{5\pi }{4} $
 BETA
  BETA 
             
             
           
           
           
          