Trigonometric Equations Question 40

Question: The number of values of x in the interval

[0, 5 $ \pi $ ] satisfying the equation $ 3{{\sin }^{2}}x-7\sin x+2=0 $ is [IIT 1998; MP PET 2000; Pb. CET 2003]

Options:

A) 0

B) 5

C) 6

D) 10

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ 3{{\sin }^{2}}x-7\sin x+2=0 $
    $ \Rightarrow $ $ 3{{\sin }^{2}}x-6\sin x-\sin x+2=0 $
    $ \Rightarrow $ $ 3\sin (\sin x-2)-(\sin x-2)=0 $
    $ \Rightarrow $ $ (3\sin x-1),(\sin x-2)=0 $
    $ \Rightarrow $ $ \sin x=\frac{1}{3}\text{ or 2} $
    $ \Rightarrow $ $ \sin x=\frac{1}{3} $ , ( $ \because \sin x\ne 2 $ ) Let $ {{\sin }^{-1}}\frac{1}{3}=\alpha $ , $ 0<\alpha <\frac{\pi }{2} $ are the solutions in $ [0,5\pi ] $ . Then $ \alpha , $ $ \pi -\alpha ,, $ $ 2\pi +\alpha , $ $ ,3\pi -\alpha , $ $ ,4\pi +\alpha $ , $ 5\pi -\alpha $ are the solutions in $ [0,,5\pi ] $ .
    $ \therefore $ Required number of solutions = 6.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें